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Abstract

Segmentation of brain MR images plays an important role in longitudinal investigation of developmental, aging, disease
progression changes in the cerebral cortex. However, most existing brain segmentation methods consider multiple time-
point images individually and thus cannot achieve longitudinal consistency. For example, cortical thickness measured from
the segmented image will contain unnecessary temporal variations, which will affect the time related change pattern and
eventually reduce the statistical power of analysis. In this paper, we propose a 4D segmentation framework for the adult
brain MR images with the constraint of cortical thickness variations. Specifically, we utilize local intensity information to
address the intensity inhomogeneity, spatial cortical thickness constraint to maintain the cortical thickness being within a
reasonable range, and temporal cortical thickness variation constraint in neighboring time-points to suppress the artificial
variations. The proposed method has been tested on BLSA dataset and ADNI dataset with promising results. Both
qualitative and quantitative experimental results demonstrate the advantage of the proposed method, in comparison to
other state-of-the-art 4D segmentation methods.
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Introduction

With the rapid development of MR imaging technology and its

widespread use, large number of MR images are obtained for

clinical studies. Longitudinal studies, aiming to capture the time

related brain changes, are becoming more common by acquiring

multiple time-point images from each subject. It has many

applications, e.g., mapping early brain development, aging, and

tracking the progression and onset of neurodegenerative diseases

such as Alzheimers disease (AD). From image processing point of

view, brain segmentation is a fundamental step to label brain into

anatomically meaningful tissues such as gray matter (GM), white

matter (WM), and cerebrospinal fluid (CSF). Many algorithms

have been proposed for this purpose, such as SPM8 [1], FAST [2],

FANTASM [3], PVC [4], and CRUISE [5]. However, segment-

ing brain image independently will introduce random errors for

the results of different time-points. For example, the resulting

cortical thickness measured from the segmented image will contain

unnecessary temporal variations, which will affect the time related

change pattern and eventually reduce the statistical power of

analysis. To this end, several 4D segmentation methods were

proposed in recent years to address this problem by including the

temporal constraint between time-points in the segmentation

process [6–10]. In [6], the authors proposed a temporally

consistent and spatially adaptive longitudinal MR brain image

segmentation algorithm based on FANTASM, referred to as

CLASSIC, which aims at obtaining accurate measurements of

rates of change of regional and global brain volumes from serial

MR images. It iteratively performs two steps: (i) first jointly

segments a series of 3D images using a 4D image-adaptive

clustering algorithm based on the current estimate of the

longitudinal deformations in the image series; (ii) then refines

these longitudinal deformations using 4D elastic warping algo-

rithm. However, CLASSIC works voxel by voxel, and accumu-

lated subtle errors in brain tissue segmentation may largely affect

the subsequent cortical surface construction as well as the

calculation of cortical thickness. Recently, a longitudinal process-

ing pipeline was proposed in FreeSurfer [7]. In this pipeline, a

group-mean image is firstly generated by averaging from the

rigidly-aligned longitudinal images of a subject. The cortical

surfaces of the group-mean image are then used as initialization

for each longitudinal image. Finally, the cortical surfaces at each

time point are deformed to achieve longitudinal cortical surface

reconstruction.

In addition, the measurement of cortical thickness is of great

interest in studying normal brain development, aging, and a wide

variety of neurodegenerative and psychiatric disorders. Neurosci-

ence studies have suggested that various diseases such as AIDS or

AD may affect the cortical thickness [11]. Thus, by accurate

measurement of cortical thickness, one hopes to have early
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detection for certain brain diseases for possibly early treatment.

Accordingly, based on the fact that the thickness of the human

cerebral cortex varies smoothly over the whole cortex, ranging

between 1 and 5 mm [12–14], Zeng et al. [15] first introduced the

idea of using coupled level sets for segmentation of the brain

cortex. The ideas introduced by Zeng et al. were later extended by

Goldenberg et al. who proposed a fast variational geometric

approach for cortex segmentation [16]. Although the cortical

thickness constraint were utilized in these methods, they were

utilized only in the spatial domain, not for the longitudinal images.

To date, few algorithms have considered the constraint of the

changes of cortical thickness in the longitudinal studies. For

example, cortical thinning occurs by middle age and spans

widespread across cortical regions, including primary as well as

association cortex [17]. The majority of the cortical mantle

showed thinning rate of at least 0.01 mm/decade [17]. This

inspires us to temporally constrain the change of cortical thickness

in our longitudinal segmentation algorithm, which is biologically

meaningful.

We previously proposed a brain segmentation method for infant

images [18]. The main idea is to use the segmentation result from

late-time-point image (with better image contrast in more matured

brain) as prior to guide the segmentation task on early-time-point

images. There are two limitations in the previous work. First, the

temporal guidance is one-way from late-time-point to early time-

point. Second, only two time-points were included in this

framework. For example, even if there are more late-time-point

images, only one can be selected and contribute to the

segmentation of early-time-point image. In this paper, we propose

a fully 4D brain segmentation method to address the two

limitations. First, we update the framework with 4D formulation,

so temporal guidance can be collected from all time-points.

Second, images at all time-points are involved to the segmentation

process. Moreover, we introduce a cortical thickness constraint in

neighboring time-points to suppress the artificial variations. In the

next section, we discuss the methodology details of the proposed

method. Experiments are followed to evaluate the performance of

proposed method, in comparisons to manual ground truth and

other 4D methods.

Materials and Methods

Overview of the Proposed Method
An overview of the proposed framework is shown in Fig. 1. We

first use the coupled level sets (CLS) [19] to initially segment the all

time-point images separately with a population atlas [20]. These

3D segmentation results are then input into the 4D segmentation

and registration components.

In the following, we will detail our 4D segmentation and

registration components. The proposed energy function for this

4D component consists of three terms, i.e., local data fitting term,

spatial cortical thickness constraint term, and temporal cortical-

thickness constraint term. Since details of the local data fitting

term and spatial cortical thickness constraint term can be found in

our previous work [18], we will briefly overview these two terms

and mainly focus on the temporal cortical thickness change

constraint term in the following subsections.

Local Data Fitting Term
To effectively exploit information on local intensities, we need

to accurately estimate the distribution of local intensities. For each

voxel x in the image domain V, we can define a spherical

neighborhood with a small radius r, such as

Ox ¼D fy : Dx{yDƒrg. Let fVig4
i~1 denote four different regions,

i.e., white matter (WM), grey matter (GM), cerebrospinal fluid

(CSF) and the background. For y[Ox\Vi, such as in the case that

the neighborhood Ox of the voxel x sitting within the i-th image

region Vi, its intensity distribution model can be parameterized by

a Gaussian model Hi(y)~N(mi(y),si(y)). To accurately measure

the probability of image intensity I(x) at voxel x belonging to Vi,

we estimate it from all the intensity distribution models in the

neighborhood of voxel x, i.e.,

pi(I(x))~
Ð

y[Ox\Vi
Kr(y{x)p(I(x)DHi(y))dy, instead of using a

single model p(I(x)DHi(x)) as in the conversional methods, where

Kr is a Gaussian kernel with scale r to control the size of the

neighborhood [21]. Since Kr controls the size of the neighborhood

Ox, the probability pi(I(x)) can be further simplified as

pi(I(x))~
Ð

y[Vi
Kr(y{x)p(I(x)DHi(y))dy. Taking a logarithm,

the maximization of probability pi(I(x)) can be converted to the

minimization of the following energy, denoted by

Et
data,x~{ log pi(I(x))!

{

ð
y[Vi

Kr(y{x) log p(I(x)DHi(y))dy
ð1Þ

For all the voxels x[V, we can define a local intensity fitting

energy function as the following double integral:

Et
data~{

X4

i~1

ð
x

ð
y[Vi

Kr(y{x) log p(I(x)DHi(y))dydx ð2Þ

In this paper, the level set function takes negative values outside

of the zero-level-set and positive values inside of the zero-level-set.

Denoting three level set functions at time-point t as

Wt~(w1,t,w2,t,w3,t) and with the help of the Heaviside function

H , the regions corresponding to WM, GM, CSF and the

background, i.e., Mi ¼D Vi(Wt), i~1,2,3,4, can be defined

respectively as V1~H(w1,t)H(w2,t)H(w3,t),

V2 = (1{H(w1,t))H(w2,t)H(w3,t), V3~(1{H(w2,t))H(w3,t), and

V4~1{H(w3,t). Additionally, due to large overlap among the

Figure 1. The proposed framework for the 4D brain segmentation.
doi:10.1371/journal.pone.0064207.g001
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tissue distributions, it is helpful to use spatial prior Pi for guiding

the segmentation. Therefore, Eq. (2) can be reformulated as,

Et
data~{

X4

i~1

ð
x

ð
y

Kr(y{x) log (Pi(y)p(I(x)DHi(y)))

Mi(y)dydxznL(Wt)

ð3Þ

where n is a weighting constant (we set n = 0.5 in this paper), and

the second term

L(Wt)~
Ð

x
D+H(w1,t(x))DzD+H(w2,t(x))DzD+H(w3,t(x))Ddx is the

length term to maintain a smooth contour/surface during the

evolution. A population atlas was utilized as the spatial prior Pi to

segment the all time-point images.

Spatial Cortical Thickness Constraint Term
As pointed out in [15,16,22–24], the variation of regional

cortical thickness is smooth, and therefore can be used as a

constraint to guide cortical surface reconstruction. To utilize this

information, we designed a cortical thickness constraint term to

constrain the distance of zeros level surfaces of w1,t and w2,t (which

represents the inner and outer cortical boundaries) within a

predefined range ½d D�, where 0vdvD (in this paper, ½d D� is set

as [1 6.5]mm). Thus, for each point on the outer cortical surface,

we compute its closest point on the inner cortical surface and

define their Euclidean distance as the cortical thickness of the

point. Note that the level set function is a signed distance function,

therefore, for any point on the outer cortical surface, the absolute

value of w1,t at this point is simply the closest Euclidean distance

from the point to the inner cortical surface (w1,t~0). The spatial

constraint term [18] is defined for w1,t,

ES(w1,t)~½1{(H(w2,t{d){H(w2,t{D))�

½(H(w2,t{d){H(w1,t))
2z(H(w2,t{D){H(w1,t))

2�
ð4Þ

In a similar way, we can define a distance constraint term for

w2,t,

ES(w2,t)~½1{(H(w1,tzD){H(w1,tzd))�

½(H(w1,tzd){H(w2,t))
2z(H(w1,tzD){H(w2,t))

2�
ð5Þ

Temporal Cortical Thickness Variation Constraint Term
It is known that the cortical thickness is changing slowly and

smoothly in the life time span [17]. Measurement of longitudinal

cortical thickness change is highly important for analysis of

diseases related with cortical thickness change, such as Alzheimer’s

disease. With the help of the 4D HAMMER registration [25], we

can identify the anatomical correspondence between different

time-points. Recall that the inner and outer surfaces are the zero-

level surfaces of w1,t and w2,t. Thus, for any point on the outer

cortical surface (w2,t(x)~0), the absolute value of w1,t at this point

is simply the distance from the point to the inner cortical surface

(w1,t(x)~0). Let CT2,t(x)w2,t(x)~0~Dw1,t(x)Dw2,t(x)~0 be the thickness

measured from the zero-level surface of w1,t, and

CT1,t(x)w1,t(x)~0~Dw2,t(x)Dw1,t(x)~0 be the cortical thickness mea-

sured from the zero-level surface of w2,t. As shown in Fig. 2, with

the help of 4D registration algorithm [25], we can compare the

cortical thickness of current time-point with the corresponding

cortical thickness of the other neighboring time-points. Let d:,t be

the summation of the thickness differences between current time-

point t and the neighboring time-points.

For the level set w2,t, its temporal cortical thickness variation

constraint term is defined as,

ET (w2,t)~(H(w2,t){H(w0
2,t{d2,t))

2 ð6Þ

d2,t~CT2,t{
1

N

XN

t=t,t[N(t)

CT(2,t) ð7Þ

where w0
2,t is the initialization of w2,t before the surface evolution,

N(t) is the temporal neighborhood around the current time-point

t, CT(2,t) is the corresponding cortical thickness from the time-

point t. In this paper, we use the previous time-point t{1 and the

next time-point tz1 to calculate d2,t, i.e., the immediate temporal

neighbors. For example, in Fig. 2, for the red point in the outer

curve (shown in blue color), the cortical thickness difference is

d2,t~2:6{(2:5z2:4)=2~0:15w0, which means that the thick-

ness of current point is thicker than the mean thickness of the

temporal neighbors. Therefore, the cortical thickness variation

constraint term ET (w2,t) has the tendency to deflate the zero-level

surface of w2,t, i.e., to the dashed blue curve, and hence to decrease

the cortical thickness to suppress the artificial variations.

Similarly, we can define a cortical thickness variation constraint

term for w1,t,

Figure 2. Illustration of temporal cortical thickness variation constraint. The solid red (or blue) curves are the zero-level surface of w1,: (or
w2,:). CT2,: is the cortical thickness measured from the inner surfaces (red curves). The dashed green arrows denote the registration operation to warp
the corresponding thickness from the temporal neighborhoods to the current time-point. The dashed blue curves in the middle is the reasonable
surface determined after measuring the cortical thickness difference between current time-point and two neighboring time-points.
doi:10.1371/journal.pone.0064207.g002
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ET (w1,t)~(H(w1,t){H(w0
1,tzd1,t))

2 ð8Þ

d1,t~CT(1,t){
1

N

XN

t=t,t[N(t)

CT(1,t) ð9Þ

Therefore, the final energy function for the segmentation of

longitudinal brain MR images can be defined as below, which

combines the local intensity information, spatial cortical thickness

constraint, and temporal cortical thickness variation constraint:

E~
X

t

(Et
dataza(ES(w1,t)zES(w2,t))

zb(ET (w1,t)zET (w2,t)))

ð10Þ

where a and b are the blending parameters. To effectively

minimize this energy with respect to w1,t and w2,t, we can convert it

as follows,

E1(w1,t)~Et
datazaES(w1,t)zbET (w1,t),

E2(w2,t)~Et
datazaES(w2,t)zbET (w2,t):

(
ð11Þ

By calculus of variations, the minimization of the energy function

E1(w1,t) and E2(w2,t) with respect to w1,t and w2,t are achieved by

solving the gradient descent flow equations as follows,

Lw1,t

Lt
~{d(w1)fH(w2)(e1{e2)H(w3){nK1

za½1{(H(w2{d){H(w2{D))�

½(2 �H(w1){H(w2{d){H(w2{D)�

z2 � b½H(w1,t){H(w0
1,tzd1,t)�g

ð12Þ

Lw2,t

Lt
~{d(w2)f(H(w1)(e1{e2)z(e2{e3))H(w3){nK2

za½1{(H(w1zD){H(w1zd))�

½2 �H(w2){H(w1zd){H(w1zD)�

z2 � b½H(w2,t){H(w0
2,t{d2,t)�g

ð13Þ

where d is the Dirac delta function, computing the derivative of

the Heaviside function H. t denotes the evolution time, in contrast

to the physical time t,

ei(x)~{log(Pi(x))z
Ð

Kr(y{x)½log (si(y))z
(ui (y){It(x))2

2si (y)2
�dy

and Kj~div
+wj,t
D+wj,t D

� �
. The 4D segmentation and registration are

performed alternately, i.e., after each step of evolution of Eq. (10),

the 4D registration [25] is performed to derive a new cortical

thickness differences between time-points to guide the next

evolution of 4D segmentation.

Experimental Results and Analysis

The preprocessing of the input longitudinal images includes the

following steps: (1) intensity correction of each image using N3

[26]; (2) to avoid bias, the input serial images are rigidly aligned

onto an atlas space and the group-mean image can be constructed

by averaging all rigidly aligned images; (3) skull stripping [27] and

removing the cerebellum using in-house tools on the group-mean

image; (4) warping the brain mask of the group-mean image back

to the each time-point image space based on the inverted

transform matrix and then removing the non-brain using the

warped brain mask.

In our experiments, we set the allowable cortical thickness to

[1,6,5]mm, the length term n = 0.5, the weight parameter for the

spatial cortical thickness term a = 1, and b = 0.5 for the temporal

cortical thickness term. The functions d and H are regularized as

in [28]. The level set functions are reinitialized as the signed

distance functions at every iteration by using the fast marching

method [29]. To measure the overlap rate between the two

segmentations A and B, we employ the Dice ratio (DR), defined as

DR(A,B)~2DA\BD=(DADzDBD). DR ranges from 0 to 1, corre-

sponding to the worst and the best agreement between labels of

two segmentations.

Results on Simulated Data
To generate simulated images with longitudinal deformations,

we used Atrophy Simulation Package (http://www.rad.upenn.

edu/sbia/projects/atrophy_simulation.html), which can simulate

the atrophy by matching the Jacobian of the simulated

deformation to the desired volumetric changes, subject to

smoothness and topology preserving constraints employed in the

algorithm [30]. The amount of atrophy can be defined by the

shrinkage rate, 0vrsƒ1. For example, rs~0:9 implies a 10%

atrophy within the spherical area. In this paper, we set rs~0:8. By

using this package, we can simulate a longitudinal segmented

images with 5 time-points. To simulate the decrease of intensity/

contrast in aging, we set initial intensities of CSF, GM and WM of

the 1st time-point image with means of [25,85,105], which were

computed from the real images from our datasets. For the

following 4 time-points, CSF has constant intensity as 25, while

GM and WM are gradually declined with 2 and 4, respectively.

We then added some Gaussian noise to each image and used a

Gaussian kernel to smooth the image to simulate the partial

volume effect. Fig. 3 shows the simulated intensity images, ground-

truth segmentations, and corresponding segmentation results using

CLASSIC and the proposed method, respectively. The red circles

denotes the spherical area within which the atrophy and intensity/

contrast decrease were simulated. The ground truth of cortical

thickness maps are shown in the first row of Fig. 4, in which the

atrophy can be clearly visualized (see the circled regions). The

cortical thickness maps by CLASSIC and the proposed method

are shown in the 2nd and 3rd row of the Fig. 4, respectively. By

visual comparison, we can find that the thickness maps by

CLASSIC are not temporally consistent. For example, as shown in

Fig. 5, the thickness is increased at the time-point 4 and 5 for the

CLASSIC result, which is generally impossible for the elderly

brains. On the other hand, our results are much more similar with

the results of the ground truth. The Dice ratios computed by

comparison with the ground-truth segmentation, shown in the

right of Fig. 5, also demonstrate that the proposed method

achieves more accurate segmentation results.

4D Segmentation of Brain MR Images
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Results on the BLSA Dataset
To validate our proposed method, we apply our method to

longitudinal brain MR images of 10 elderly subjects from the

Baltimore Longitudinal Study of Aging (BLSA) dataset [31]. In

these 10 subjects, each subject has been successively scanned 8 or 9

times, with the interval of about 1 year. Thickness maps by

CLASSIC and the proposed method of a randomly selected

subject are shown in Fig. 6. From the zoomed views in the two

lower rows, we can clearly see that the cortical thickness changes

dramatically between neighboring time-points by CLASSIC. For

example, the thickness in the lower part of 2nd time-point (circled

regions) is even much thicker than the thickness of the 1st time-

point, which is generally unrealistic in aging brains. The

inconsistency can also be observed from the segmentation results

in Fig. 7. For the zoomed views in the two lower rows, the

segmentation result of 5th time-point are quite inconsistent with

the results of the other time-points. The average thickness on 4

lobes by CLASSIC and the proposed method are also shown in

Fig. 8. As we can see, the average cortical thickness declines along

the time by our proposed method, while the results by CLASSIC

appears bumpy.

Figure 3. Rows from top to bottom show the simulated intensity images, ground-truth segmentation, and segmentation results by
CLASSIC and the proposed method, respectively.
doi:10.1371/journal.pone.0064207.g003

Figure 4. Rows from top to bottom show the cortical thickness maps of ground truth (1st row), thickness maps by CLASSIC (2nd
row), and thickness maps by the proposed method (3rd row).
doi:10.1371/journal.pone.0064207.g004
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Results on the ADNI Dataset
To further validate our proposed method, we applied the

method to the ADNI dataset with four groups of subjects,

including the normal control (NC), stable mild cognitive impair-

ment (S-MCI), progressive mild cognitive impairment (P-MCI),

and AD groups, in which each group contains about 37 subjects

with 4 time points in 24 months. Thickness maps of four

representative subjects from each group are shown in Fig. 9. As we

can see, the thickness maps by CLASSIC (upper row in each panel

of Fig. 9) are bumpy temporally, especially in the regions indicated

by the red circles. In contrast, the results by the proposed method

(lower row in each panel of Fig. 9) are much more consistent along

time than CLASSIC. We also calculate the mean cortical thickness

in the four lobes from all subjects, as shown in the Fig. 10. The

thickness by CLASSIC (the 1st column) at the second time-point

even became thicker than that at the baseline. While for the results

by the proposed method (the 3rd column), the decline trend of

cortical thickness is apparent. The largest decreasing trend of

cortical thickness is shown in the temporal lobes of the AD group,

which is consistent to the findings in the literature [32,33]. Overall,

the NC group has the largest average cortical thickness at the

baseline and also has the slowest longitudinal thickness decline

trend. While, the AD group has the smallest average cortical

thickness at the baseline and the fastest longitudinal thickness

decline trend. The longitudinal cortical thicknesses of S-MCI and

P-MCI groups are in-between that of the NC and AD groups. And

the S-MCI group is relatively close to the NC group, and the P-

MCI group is relatively close to the AD group, in terms of both the

baseline thickness and longitudinal thickness decline trend [8].

Comparison with FreeSurfer
In this section, we make comparisons with the recent

longitudinal processing pipeline developed in FreeSurfer [7]. In

the FreeSurfer pipeline, a group-mean or group-median image is

firstly generated by averaging from the rigidly-aligned longitudinal

images of a subject. The cortical surfaces of the group-mean

image/group-median are then used as initialization for each

longitudinal image. Finally, the cortical surfaces at each time point

are separately deformed to achieve longitudinal cortical surface

reconstruction. Thickness maps by FreeSurfer and the proposed

Figure 5. Comparison of cortical thickness and tissue overlap with the ground truth by CLASSIC and the proposed method. Left: The
thickness maps. Right: Dice ratios of CLASSIC and the proposed method for WM and GM, respectively.
doi:10.1371/journal.pone.0064207.g005

Figure 6. Cortical thickness maps derived by CLASSIC (the 1st row) and the proposed method (the 2nd row) on a randomly selected
subject from the BLSA dataset. The last two rows show the zoomed views of the first two rows.
doi:10.1371/journal.pone.0064207.g006

4D Segmentation of Brain MR Images
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method of a randomly selected subject are shown in Fig. 11.

Although FreeSurfer can guarantee that the reconstructed

longitudinal cortical surfaces at different time points have exactly

the same triangular mesh configuration and topology with the

cortical surfaces of the group-mean/group-median image, no

temporal constraint is imposed in the FreeSurfer, thus the

temporal trajectories of attributes (such as positions and cortical

thicknesses) of vertices on longitudinal cortical surfaces are

generally bumpy [8]. For example, from the zoomed views in

the two lower rows, we can clearly see that the cortical thickness

changes dramatically from the 1st time-point to the 2nd time-point

by FreeSurfer. The average thickness on all subjects from NC, S-

MCI, P-MCI, and AD groups is shown in the middle column of

Fig. 10 with comparison with the proposed method, from which

we can also find the thickness maps by FreeSurfer are bumpy

temporally, although the overall descend trend is similar with the

proposed method. Taking the NC group for an example, the

thickness of the temporal lobe at the 3rd time-point is even larger

than the 2nd time-point point in the results by FreeSurfer.

Compared with the results by FreeSurfer, the thickness measured

by the proposed method is more consistent. To better show the

advantage of the proposed method, we further parcellate the

cerebral cortex into 78 cortical regions instead of 4 lobes by

employing the Automated Anatomical Labeling (AAL) template

[34] and calculate the average thickness in these small cortical

regions (ROIs). Fig. 12 shows the average cortical thickness in 10

representative ROIs on all NC subjects. These 10 ROIs include

the left (L) and right (R) parts of Precentral, Frontal Sup, Postcentral,

Temporal Sup, and Occipital Sup regions, where Sup denotes superior

gyrus. It can be clearly seen that the thickness by the FreeSurfer

without temporal constraint is bumpy, while our result is much

more temporally consistent.

Discussion

In this paper, we have proposed a novel 4D brain segmentation

framework with applications in the elderly brain MR images. The

temporal guidance is collected from all time-points and images at

Figure 7. The first row shows the original intensity images, and the next two rows show the segmentation results by CLASSIC and
the proposed method, respectively. The last two rows show the zoomed views of the 2nd and 3rd rows.
doi:10.1371/journal.pone.0064207.g007
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all time-points are involved to the segmentation process. More-

over, a cortical thickness constraint in neighboring time-points was

proposed to suppress the artificial variations.

The average total computation cost is around 5.5 hours for the

segmentation of a serial images with 4–5 time-points in MATLAB

environment on a PC with 2.5 GHz Pentium4 processor. In this

computational time, 0.5 hour is used for initial segmentation of

each time-point image individually, and 1.5 hour is used for 4D

registration, and 0.5 hour for the 4D segmentation. The 2–3

iterations of 4D registration-segmentation is enough for a good

segmentation. Overall, the proposed segmentation framework is

able to achieve satisfactory segmentation results within a

reasonable computational time. Note that more than 36 hours

Figure 8. The average cortical thicknesses on 4 lobes of 10 elderly subjects from the BLSA dataset measured by CLASSIC (left
column) and our proposed method (right column). One curve indicates for one subject.
doi:10.1371/journal.pone.0064207.g008
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are needed for the FreeSurfer to process a typical serial images

with 4–5 time-points.

To avoid enforcing any cortical-thickness constraint on the

subcortical GM regions, we adopt the similar strategy in [19] to

define a mask for the ventricular CSF and subcortical GM regions,

where the cortical thickness constraint will not be imposed. In

these subcortical regions, only local data fitting and atlas prior are

employed to guide the segmentation.

Reported cortical thicknesses from post-mortem data in adults

are in the range of 1.3–4.5 mm [12–14]. In vivo MR-based

measurements from [35] were reported to have a mean thickness

of 3.2 mm. Although, to the best of our knowledge, there are

currently no studies measuring the physical cortical thickness, we

conservatively set the acceptable range as 1–6.5 mm. The other

weighting parameters a, b and n are set based on our experience.

In CLASSIC method, the follow-up images are rigidly aligned

onto the baseline image, which may introduce bias, since the

follow-up images will be interpolated. Instead, in this paper, to

avoid bias, all the images are kept in their own space. In 4D

registration, 4D-HAMMER registration algorithm was adopted in

this paper. However, one limitation of 4D-HAMMER is to build a

4D template by repeating one specific 3D image as templates for

Figure 9. Cortical thickness maps derived by CLASSIC and the proposed method on the 4 reprehensive subjects from a) NC, b) S-
MCI, c) P-MCI, and d) AD groups. In each group, the upper row shows the results of CLASSIC and the lower row shows the proposed results.
Circles indicate the region with dramatic thickness changes by CLASSIC, while consistent measurement achieved by our proposed method.
doi:10.1371/journal.pone.0064207.g009

Figure 10. The average cortical thickness on 4 lobes derived by CLASSIC (the left column), the FreeSurfer (the middle column) and
the proposed method (the right column) on all subjects from NC, S-MCI, P-MCI and AD groups.
doi:10.1371/journal.pone.0064207.g010
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Figure 11. Cortical thickness maps derived by FreeSurfer (the 1st row) and the proposed method (the 2nd row) on a randomly
selected normal subject from the ADNI dataset. Regions indicated by the dotted curves show dramatic longitudinal changes of cortical
thickness by FreeSurfer, while much consistent results by the proposed method.
doi:10.1371/journal.pone.0064207.g011

Figure 12. Average cortical thickness in 10 representative small cortical regions (ROIs) on all NC subjects. These 10 ROIs include the left
(L) and right (R) parts of Precentral, Frontal Sup, Postcentral, Temporal Sup, and Occipital Sup regions, where Sup denotes superior gyrus.
doi:10.1371/journal.pone.0064207.g012
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different time-points, which may introduce bias in longitudinal

data analysis. In our future work, we will use some more powerful

registration methods, e.g., [36], to possibly avoid bias.

There are many definitions of cortical thickness [37–40]. For

example, in [10,40], the cortical thickness is defined as the

minimum line integral on the probabilistic segmentation of GM.

In [41], it is defined at each point as the length of the integral

curve of the gradient field passing through that point. While, in

this paper, the cortical thickness is defined as similar as [15,42],

which takes advantage of the level set function as a signed distance

function. A comprehensive review on definitions of the cortical

thickness can be found in [40]. This paper does not focus on how

to measure the cortical thickness, but on how to ensure the

temporal consistency of the cortical thickness. On the other hand,

for other the definitions of cortical thickness in [10,40,41], we can

also achieve the similar temporal consistent cortical thickness

measurement using the same idea proposed in this paper.

Temporal cortical thickness constraint is introduced in this

study to suppress the unwanted artificial variations between time-

points. Too strong constraint may enforce the consistency between

time-points and appear smoothing effects. In this paper, we tune

the parameter for this constraint based on a set of training data.

Experiments demonstrated that the proposed approach achieved

results comparable to ground truth, and thus validates the setting

of the parameter. The source code and software of the proposed

method have been released in NITRC (http://www.nitrc.org/

projects/abeat).
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